Title

時系列分析(統計モデル編)

ARIMAなどの統計モデルの概要を学び、実際にPythonで統計モデルを用いた時系列分析をできるようになろう

4.29 (340 reviews)
Udemy
platform
日本語
language
Engineering
category
instructor
時系列分析(統計モデル編)
2 388
students
3 hours
content
Oct 2024
last update
$44.99
regular price

What you will learn

時系列分析の基礎

AR, MAモデル

SARIMAモデル

Pythonによる時系列分析

Why take this course?

📅 【時系列分析(統計モデル編)】


コース概要

時系列分析は、市場動向、天気予報、財務時系列分析など、現実のさまざまな場面で不可欠な分析手法です。本コースでは、ARモデルからMAモデル、ARIMA、SARIMAモデルを中心に、古典的な統計モデルの理解からPythonでの実践までを網羅します。


このコースをとってもお得い!

  • 古典的な統計モデルの強さ:データ数が少ない状況におい、古典的な統計モデルは機械学習方法よりも高い精度を実現することがあります。
  • 広範囲の応用分野:金融業界、気象学、経済分析など、幅広い분野で活用できます。
  • データサイエンスの基礎:データサイエンスを学んでいる方であれば、このコースは統計モデルに馴染えるところからの専門知識への手段になります。

講義内容 📚

1. 時系列データの基礎

  • 時系列データの収集と前処理方法の導入
  • 時系列データの特性と注意点

<2. AR過程

  • ARモデルの理解と設定方法
  • ARモデルの適用範囲と制限

<3. MA過程

  • MAモデルの概念と構築
  • MAモデルの適用と分析手法

<4. ARMA過程

  • ARMAモデルの統合と特徴
  • ARMAモデルの実装と評価

<5. 和分過程

  • 季節性を持つARIMAモデル(SARIMA)の理解
  • SARIMAモデルの構築と適用

<6. Pythonによる実践

  • Pythonでの統計モデルの実装
  • 実際のデータでのモデルの適用と結果解析

🎓 時系列分析の世界に一歩踏み出しましょう! 本コースを通じて、古典的な統計モデルを用いた時系列予測の技術を身につけ、あなた自身とあなたが関わる分野での分析能力を大きく向上させます。実践によって学ぶこの機会はお見かけいたします。どうぞ、一緒に時系列分析の専門家へと成長していきましょう!

Our review


Course Overview: The course has received a high rating of 4.13 from recent reviews, indicating that it is well-received by the audience. It provides a comprehensive understanding of time series analysis, particularly focusing on practical applications using machine learning and deep learning for time series forecasting. The course is structured in a way that is accessible to beginners, yet challenging enough for those with some prior knowledge.

Pros:

  • Accessibility for Beginners: The course is designed to be easily understood by individuals who have basic Python skills and an understanding of scientific libraries. It does not require deep dives into complex mathematics initially, making it suitable for novices.
  • Comprehensive Coverage: The course covers a range of topics, including ARIMA and SARIMA models, and provides a solid foundation in statistical approaches to time series forecasting.
  • Clear Instruction: The explanations are conveyed in a clear and understandable manner, with practical examples and real-world applications that help solidify the concepts taught.
  • Practical Application: The course emphasizes hands-on coding and practical implementation, allowing students to apply what they learn directly to time series data analysis.
  • Well-Structured Content: The course is well-structured, with a balance between theoretical explanations and practical exercises. This allows students to follow along without getting overwhelmed by too much theory upfront.
  • Supports Learning Continuity: The course sets the stage for further learning in time series analysis and encourages students to explore additional resources for the theoretical aspects they might want to delve deeper into.

Cons:

  • Basic Python Skills Required: While the course is designed for those with basic Python skills, some reviewers felt that a more detailed explanation of Python programming, especially code examples like selecting the model with the smallest AIC, would have been beneficial.
  • Theoretical Foundations: Some students found that while they could follow the practical parts, having more theoretical background beforehand would have been helpful for understanding the logic behind the models and methods used.

General Feedback:

  • High Satisfaction: Students expressed high satisfaction with the course, particularly noting its usefulness in providing a clear understanding of how to approach time series data analysis with practical tools and methodologies.
  • Practical Examples: The inclusion of practical examples and real-world applications was highly appreciated, as it allowed students to grasp the concepts effectively.
  • Desire for Additional Content: Several reviewers expressed a desire for additional content or clarification on specific topics, such as more detailed Python programming explanations and deeper theoretical background where necessary.

Suggestions for Improvement:

  • More Detailed Python Coding Instructions: Some students suggested that providing code examples with more detail, especially for operations like selecting the best model, would be beneficial.
  • Expand on Theoretical Aspects: Offering a more in-depth exploration of the theoretical underpinnings of time series analysis and statistical models could enhance understanding for those who are less familiar with these concepts.

Final Verdict: Overall, this course is highly recommended for anyone interested in learning about time series forecasting using machine learning and deep learning techniques. It is well-received for its clear instruction, practical examples, and comprehensive coverage of the topic. For those looking to improve their understanding of the statistical models behind time series analysis or seeking a solid foundation in Python for time series processing, this course provides an excellent starting point. Future iterations of the course could consider incorporating more detailed Python programming explanations and a deeper theoretical background to cater to the diverse learning needs of its audience.

Charts

Price

時系列分析(統計モデル編) - Price chart

Rating

時系列分析(統計モデル編) - Ratings chart

Enrollment distribution

時系列分析(統計モデル編) - Distribution chart

Related Topics

4920940
udemy ID
10/10/2022
course created date
20/10/2022
course indexed date
Bot
course submited by