Neural Networks in Python: Deep Learning for Beginners

Learn Artificial Neural Networks (ANN) in Python. Build predictive deep learning models using Keras & Tensorflow| Python

4.34 (1145 reviews)
Udemy
platform
English
language
Data Science
category
118,082
students
9.5 hours
content
Jan 2022
last update
$19.99
regular price

What you will learn

Get a solid understanding of Artificial Neural Networks (ANN) and Deep Learning

Understand the business scenarios where Artificial Neural Networks (ANN) is applicable

Building a Artificial Neural Networks (ANN) in Python

Use Artificial Neural Networks (ANN) to make predictions

Learn usage of Keras and Tensorflow libraries

Use Pandas DataFrames to manipulate data and make statistical computations.

Description

You're looking for a complete Artificial Neural Network (ANN) course that teaches you everything you need to create a Neural Network model in Python, right?

You've found the right Neural Networks course!

After completing this course you will be able to:

  • Identify the business problem which can be solved using Neural network Models.

  • Have a clear understanding of Advanced Neural network concepts such as Gradient Descent, forward and Backward Propagation etc.

  • Create Neural network models in Python using Keras and Tensorflow libraries and analyze their results.

  • Confidently practice, discuss and understand Deep Learning concepts

How this course will help you?

A Verifiable Certificate of Completion is presented to all students who undertake this Neural networks course.

If you are a business Analyst or an executive, or a student who wants to learn and apply Deep learning in Real world problems of business, this course will give you a solid base for that by teaching you some of the most advanced concepts of Neural networks and their implementation in Python without getting too Mathematical.

Why should you choose this course?

This course covers all the steps that one should take to create a predictive model using Neural Networks.

Most courses only focus on teaching how to run the analysis but we believe that having a strong theoretical understanding of the concepts enables us to create a good model . And after running the analysis, one should be able to judge how good the model is and interpret the results to actually be able to help the business.

What makes us qualified to teach you?

The course is taught by Abhishek and Pukhraj. As managers in Global Analytics Consulting firm, we have helped businesses solve their business problem using Deep learning techniques and we have used our experience to include the practical aspects of data analysis in this course

We are also the creators of some of the most popular online courses - with over 250,000 enrollments and thousands of 5-star reviews like these ones:

This is very good, i love the fact the all explanation given can be understood by a layman - Joshua

Thank you Author for this wonderful course. You are the best and this course is worth any price. - Daisy

Our Promise

Teaching our students is our job and we are committed to it. If you have any questions about the course content, practice sheet or anything related to any topic, you can always post a question in the course or send us a direct message.

Download Practice files, take Practice test, and complete Assignments

With each lecture, there are class notes attached for you to follow along. You can also take practice test to check your understanding of concepts. There is a final practical assignment for you to practically implement your learning.

What is covered in this course?

This course teaches you all the steps of creating a Neural network based model i.e. a Deep Learning model, to solve business problems.

Below are the course contents of this course on ANN:

  • Part 1 - Python basics

    This part gets you started with Python.

    This part will help you set up the python and Jupyter environment on your system and it'll teach you how to perform some basic operations in Python. We will understand the importance of different libraries such as Numpy, Pandas & Seaborn.

  • Part 2 - Theoretical Concepts

    This part will give you a solid understanding of concepts involved in Neural Networks.

    In this section you will learn about the single cells or Perceptrons and how Perceptrons are stacked to create a network architecture. Once architecture is set, we understand the Gradient descent algorithm to find the minima of a function and learn how this is used to optimize our network model.

  • Part 3 - Creating Regression and Classification ANN model in Python

    In this part you will learn how to create ANN models in Python.

    We will start this section by creating an ANN model using Sequential API to solve a classification problem. We learn how to define network architecture, configure the model and train the model. Then we evaluate the performance of our trained model and use it to predict on new data. We also solve a regression problem in which we try to predict house prices in a location. We will also cover how to create complex ANN architectures using functional API. Lastly we learn how to save and restore models.

    We also understand the importance of libraries such as Keras and TensorFlow in this part.

  • Part 4 - Data Preprocessing

    In this part you will learn what actions you need to take to prepare Data for the analysis, these steps are very important for creating a meaningful.

    In this section, we will start with the basic theory of decision tree then we cover data pre-processing topics like  missing value imputation, variable transformation and Test-Train split.

  • Part 5 - Classic ML technique - Linear Regression
    This section starts with simple linear regression and then covers multiple linear regression.

    We have covered the basic theory behind each concept without getting too mathematical about it so that you

    understand where the concept is coming from and how it is important. But even if you don't understand

    it,  it will be okay as long as you learn how to run and interpret the result as taught in the practical lectures.

    We also look at how to quantify models accuracy, what is the meaning of F statistic, how categorical variables in the independent variables dataset are interpreted in the results and how do we finally interpret the result to find out the answer to a business problem.

By the end of this course, your confidence in creating a Neural Network model in Python will soar. You'll have a thorough understanding of how to use ANN to create predictive models and solve business problems.


Go ahead and click the enroll button, and I'll see you in lesson 1!


Cheers

Start-Tech Academy


------------

Below are some popular FAQs of students who want to start their Deep learning journey-


Why use Python for Deep Learning?

Understanding Python is one of the valuable skills needed for a career in Deep Learning.

Though it hasn’t always been, Python is the programming language of choice for data science. Here’s a brief history:

    In 2016, it overtook R on Kaggle, the premier platform for data science competitions.

    In 2017, it overtook R on KDNuggets’s annual poll of data scientists’ most used tools.

    In 2018, 66% of data scientists reported using Python daily, making it the number one tool for analytics professionals.

Deep Learning experts expect this trend to continue with increasing development in the Python ecosystem. And while your journey to learn Python programming may be just beginning, it’s nice to know that employment opportunities are abundant (and growing) as well.

What is the difference between Data Mining, Machine Learning, and Deep Learning?

Put simply, machine learning and data mining use the same algorithms and techniques as data mining, except the kinds of predictions vary. While data mining discovers previously unknown patterns and knowledge, machine learning reproduces known patterns and knowledge—and further automatically applies that information to data, decision-making, and actions.

Deep learning, on the other hand, uses advanced computing power and special types of neural networks and applies them to large amounts of data to learn, understand, and identify complicated patterns. Automatic language translation and medical diagnoses are examples of deep learning.

Screenshots

Neural Networks in Python: Deep Learning for Beginners - Screenshot_01Neural Networks in Python: Deep Learning for Beginners - Screenshot_02Neural Networks in Python: Deep Learning for Beginners - Screenshot_03Neural Networks in Python: Deep Learning for Beginners - Screenshot_04

Content

Introduction

Welcome to the course
Introduction to Neural Networks and Course flow
Course resources

Setting up Python and Jupyter Notebook

Installing Python and Anaconda
Opening Jupyter Notebook
Introduction to Jupyter
Arithmetic operators in Python: Python Basics
Strings in Python: Python Basics
Lists, Tuples and Directories: Python Basics
Working with Numpy Library of Python
Working with Pandas Library of Python
Working with Seaborn Library of Python

Single Cells - Perceptron and Sigmoid Neuron

Perceptron
Activation Functions
Python - Creating Perceptron model

Neural Networks - Stacking cells to create network

Basic Terminologies
Gradient Descent
Back Propagation
Quiz

Important concepts: Common Interview questions

Some Important Concepts

Standard Model Parameters

Hyperparameters

Practice Test

Test your conceptual understanding

Tensorflow and Keras

Keras and Tensorflow
Installing Tensorflow and Keras

Python - Dataset for classification problem

Dataset for classification
Normalization and Test-Train split

Python - Building and training the Model

Different ways to create ANN using Keras
Building the Neural Network using Keras
Compiling and Training the Neural Network model
Evaluating performance and Predicting using Keras

Python - Solving a Regression problem using ANN

Building Neural Network for Regression Problem

Complex ANN Architectures using Functional API

Using Functional API for complex architectures

Saving and Restoring Models

Saving - Restoring Models and Using Callbacks

Hyperparameter Tuning

Hyperparameter Tuning

Add-on 1: Data Preprocessing

Gathering Business Knowledge
Data Exploration
The Dataset and the Data Dictionary
Importing Data in Python
Univariate analysis and EDD
EDD in Python
Outlier Treatment
Outlier Treatment in Python
Missing Value Imputation
Missing Value Imputation in Python
Seasonality in Data
Bi-variate analysis and Variable transformation
Variable transformation and deletion in Python
Non-usable variables
Dummy variable creation: Handling qualitative data
Dummy variable creation in Python
Correlation Analysis
Correlation Analysis in Python

Add-on 2: Classic ML models - Linear Regression

The Problem Statement
Basic Equations and Ordinary Least Squares (OLS) method
Assessing accuracy of predicted coefficients
Assessing Model Accuracy: RSE and R squared
Simple Linear Regression in Python
Multiple Linear Regression
The F - statistic
Interpreting results of Categorical variables
Multiple Linear Regression in Python
Test-train split
Bias Variance trade-off
Test train split in Python
Practice Assignment

Reviews

Jorge
February 24, 2022
It is a great course! Even thought, I think that some prior experience in programming and statistical knowledge is required to really enjoy the course. Congrats for the course Start-Tech Academy! And thank you very much.
Rafael
November 19, 2021
There is not resources folders with the source of the programs, the programs which are shown in this course never are full programs, allways are pieces of code without the import of the libraries. For a starting student will be very hard to follow the course, and probably he or she will don't finish it. Probably the worst course since I'm on Udemy
Desi
July 16, 2021
The course was well paced and thorough. Concepts were well explained and the practical's were easy to follow. Great course, really enjoyed it!
LakshmiKishore
November 14, 2020
Superb!! Clarity in Explanation. Have Gone Through many on web but this one is pretty clear. If Mathematical part(two videos done on needed calculus) also covered in depth it will help academically too.
Shivam
June 11, 2020
I learn ANN with smoothness as this course provide depth knowledge of mathematics too behing deep leaning parameters
P.Srideviponmalar
May 16, 2020
My last Practice Assignment is still not showing a tick mark though my course is 100% completed. Please take some action and reply as soon as possible.
Babalola,
May 15, 2020
I love the course delivery particularly the focus on Machine learning and I must say it was well delivered. Kudos to our amiable instructors!
Lewis
May 15, 2020
I have experience with ANN and Python, however I was hoping to understand the topic in more detail without focussing too heavily on the mathematics. So far so good.
José
May 12, 2020
I have seen a few lessons yet, but by now it seems a good course to me. It begins from te essentials. As an adittional comment, I'm not english native speaker and the english used by the tutors are very easy to undestand to me.
Thomas
May 7, 2020
the pronunciation of the speakers makes it difficult for me to understand. Also, the back noise from cars is kinda distracting. I find the way of presenting the topic efficient enough
Umang
April 22, 2020
Really very well explained with practical solution that will helpful for beginners and intermediate learner of this course.
Twarit
April 19, 2020
It was a good beginning of my learning of ANN and hopefully I will be able to build on this learning.
C
April 18, 2020
Perfect Voice clarity and explanation. Very good presentation and flow but as content is becoming complex, I am taking more time to grab it.
Gnana
April 17, 2020
i finished the course, Submitted final Assignment too a day before, but still certificate is not getting nenerated.. :-(
Abdelrahman
March 27, 2020
more explanation of parameters & please improve the [cc] in the video has a lot of mistakes and I don't really understand the accent

Charts

Price

Neural Networks in Python: Deep Learning for Beginners - Price chart

Rating

Neural Networks in Python: Deep Learning for Beginners - Ratings chart

Enrollment distribution

Neural Networks in Python: Deep Learning for Beginners - Distribution chart

Coupons

DateDiscountStatus
11/21/201995% OFF
expired
3/13/2020100% OFF
expired
3/26/2020100% OFF
expired
4/10/2020100% OFF
expired
4/17/2020100% OFF
expired
4/25/2020100% OFF
expired
5/6/2020100% OFF
expired
5/19/2020100% OFF
expired
5/27/2020100% OFF
expired
6/5/2020100% OFF
expired
6/25/2020100% OFF
expired
7/14/2020100% OFF
expired
8/12/2020100% OFF
expired
5/1/2021100% OFF
expired
9/25/2021100% OFF
expired
10/22/2021100% OFF
expired
1/5/2022100% OFF
expired
4/25/2022100% OFF
expired
4/29/2022100% OFF
expired
5/10/2022100% OFF
expired
5/23/2022100% OFF
expired
6/19/2022100% OFF
expired
6/26/2022100% OFF
expired
7/10/2022100% OFF
expired
7/20/2022100% OFF
expired
7/26/2022100% OFF
expired
8/3/2022100% OFF
expired

Related Topics

2652356
udemy ID
11/12/2019
course created date
11/16/2019
course indexed date
Bot
course submited by