Udemy

Platform

English

Language

Analytics & Automation

Category

Marketing Analytics and Retail Business Management

Retail analytics using MS Excel - Covering Forecasting, Market Basket, RFM, Customer Valuation & Price Bundling

4.30 (631 reviews)

53281

Students

11 hours

Content

Nov 2020

Last Update
$429000
Regular Price

What you will learn

Become proficient in using powerful tools such as excel solver to create forecasting models

Learn how to estimate the trend and seasonal aspects of sales

Perform market basket analysis and calculate lift to derive a store layout that maximizes sales from complementary products

Understand how to interpret the result of Linear Regression model and translate them into actionable insight

Learn practical concepts of how to get revenue/profit optimized price point in case of Bundle products.

Learn why cable companies bundle landlines, cell phone service, TV service, and Internet service (Bundling)

Perform RFM (Recency, frequency, and monetary value) analysis to help you maximize profit from promotional mail campaigns.

Learn to calculate customer’s lifetime value under different scenarios and use it to increase the company’s profitability.

Incorporate the impact of discount rate and retention rate to calculate customer value




Description

You're looking for a complete course on understanding Retail Analytics to drive business decisions involving production schedules, inventory management, promotional mail optimization, store layouting, estimating right bundle price, customer valuation and many other parts of the business., right?

You've found the right Marketing & Retail Analytics: Strategies & Models in Excel! This course teaches you everything you need to know about different forecasting models, Market Basket analysis, RFM (recency, frequency, monetary) analysis, Customer Valuation methods & Price Bundling analysis and how to implement these models in Excel using advanced excel tool.

After completing this course you will be able to:

  • Implement forecasting models such as simple linear, simple multiple regression, Additive and multiplicative trend and seasonality model and many more.

  • Perform market basket analysis and calculate lift to derive a store layout that maximizes sales from complementary products.

  • Do RFM (Recency, frequency, and monetary value) analysis to help you maximize profit from promotional mail campaigns.

  • Increase revenue/profit of your firm by implementing revenue / profit maximizing bundle price point using Excel solver Add-in

  • Understand the value of your customers to make intelligent decisions on how to spend money acquiring them

  • Confidently practice, discuss and understand different retail analytics models used by organizations

How this course will help you?

A Verifiable Certificate of Completion is presented to all students who undertake this Marketing & Retail Analytics: Strategies & Models in Excel course.

If you are a business manager or an executive, or a student who wants to learn and apply forecasting models in real world problems of business, this course will give you a solid base for that by teaching you the most popular forecasting models and how to implement it.

Why should you choose this course?

We believe in teaching by example. This course is no exception. Every Section’s primary focus is to teach you the concepts through how-to examples. Each section has the following components:

  • Theoretical concepts and use cases of different forecasting models

  • Step-by-step instructions on implement forecasting models in excel

  • Downloadable Excel file containing data and solutions used in each lecture

  • Class notes and assignments to revise and practice the concepts

The practical classes where we create the model for each of these strategies is something which differentiates this course from any other course available online.

What makes us qualified to teach you?

The course is taught by Abhishek and Pukhraj. As managers in Global Analytics Consulting firm, we have helped businesses solve their business problem using Analytics and we have used our experience to include the practical aspects of Marketing and data analytics in this course

We are also the creators of some of the most popular online courses - with over 170,000 enrollments and thousands of 5-star reviews like these ones:

This is very good, i love the fact the all explanation given can be understood by a layman - Joshua

Thank you Author for this wonderful course. You are the best and this course is worth any price. - Daisy

Our Promise

Teaching our students is our job and we are committed to it. If you have any questions about the course content, practice sheet or anything related to any topic, you can always post a question in the course or send us a direct message.

Download Practice files, take Quizzes, and complete Assignments

With each lecture, there are class notes attached for you to follow along. You can also take quizzes to check your understanding of concepts. Each section contains a practice assignment for you to practically implement your learning.

What is covered in this course?

Understanding how future sales will change is one of the key information needed by manager to take data driven decisions. In this course, we will explore how one can use forecasting models to

  • See patterns in time series data

  • Make forecasts based on models

Let me give you a brief overview of the course

  • Section 1 - Introduction

    In this section we will learn about the course structure


  • Section 2 - Basics of Forecasting

    In this section, we will discuss about the basic of forecasting and we will also learn the easiest way to create simple linear regression model in Excel


  • Section 3 - Getting Data Ready for Regression Model

    In this section you will learn what actions you need to take a step by step to get the data and then prepare it for the analysis these steps are very important.

    We start with understanding the importance of business knowledge then we will see how to do data exploration. We learn how to do uni-variate analysis and bi-variate analysis then we cover topics like outlier treatment and missing value imputation.


  • Section 4 - Forecasting using Regression Model

    This section starts with simple linear regression and then covers multiple linear regression.We have covered the basic theory behind each concept without getting too mathematical about it so that you understand where the concept is coming from and how it is important. But even if you don't understand it,  it will be okay as long as you learn how to run and interpret the result as taught in the practical lectures.

    We also look at how to quantify models accuracy, what is the meaning of F statistic, how categorical variables in the independent variables data set are interpreted in the results.


  • Section 5 - Handling Special events like Holiday sales

    In this section we will learn how to incorporate effects of Day of Week Effect, Month Effect or any special event such Holidays, pay day etc.


  • Section 6 - Identifying Seasonality & Trend for Forecasting

    In this section we will learn about trends and seasonality and how to use the Solver to develop an additive or multiplicative model to estimate trends and seasonality. We will also learn how to use moving averages to eliminate seasonality to easily see trends in sales.


  • Section 7 - Market Basket Analysis and Lift

    In this section we will learn about market basket analysis and learn how to calculate lift to derive a store layout that maximizes sales from complementary products.


  • Section 8 - Recency, frequency, and monetary value analysis

    In this section we will learn techniques to perform RFM (Recency, frequency, and monetary value) analysis to help you maximize profit from promotional mail campaigns.


  • Section 9 - Recency, frequency, and monetary value analysis

    In this section we will learn price bundling techniques and learn how to increase revenue/profit of your firm by implementing revenue / profit maximizing price point using Excel solver Add-in


  • Section 10 - Recency, frequency, and monetary value analysis

    In this section, we will discuss about the basic of concepts of Customer Lifetime value and learn how to create excel model to find lifetime customer value and perform sensitivity analysis to capture variations in lifetime value under different scenarios.


  • Section 11 - Excel crash course
    If you're new to Excel, or you've played around with it but want to get more comfortable with Excel's advanced features required for this course. Either way, this section will be great for you to revise your rusty excel skills .

Some of the examples in this course are from the book Marketing Analytics: Data-Driven Techniques with Microsoft Excel [Winston, Wayne L.]. We suggest this book as reading material for anyone aspiring to be a marketing analyst.

I am pretty confident that the course will give you the necessary knowledge and skills to immediately see practical benefits in your work place.

Go ahead and click the enroll button, and I'll see you in lesson 1

Cheers

Start-Tech Academy


Screenshots

Marketing Analytics and Retail Business Management
Marketing Analytics and Retail Business Management
Marketing Analytics and Retail Business Management
Marketing Analytics and Retail Business Management

Content

Course Introduction

Introduction

Part 1: Forecasting

Basics of Forecasting

Course resources

Creating Linear Model with Trendlines

Quiz

1.1 Getting Data ready for Regression Model

Gathering Business Knowledge

Data Exploration

The Data and the Data Dictionary

Univariate analysis and EDD

Discriptive Data Analytics in Excel

Outlier Treatment

Identifying and Treating Outliers in Excel

Missing Value Imputation

Identifying and Treating missing values in Excel

Variable Transformation in Excel

Dummy variable creation: Handling qualitative data

Dummy Variable Creation in Excel

Correlation Analysis

Creating Correlation Matrix in Excel

1.2 Forecasting using Regression Model

The Problem Statement

Basic Equations and Ordinary Least Squares (OLS) method

Assessing accuracy of predicted coefficients

Assessing Model Accuracy: RSE and R squared

Creating Simple Linear Regression model

Multiple Linear Regression

The F - statistic

Interpreting results of Categorical variables

Creating Multiple Linear Regression model

1.3 Handling Special events like Holiday sales

Forecasting in presence of special events

Excel: Running Linear Regression using Solver

Excel: Including the impact of Special Events

1.4 Identifying Seasonality & Trend for Forecasting

Models to identify Trend & Seasonality

Excel: Additive model to identify Trend & Seasonality

Excel: Multiplicative model to identify Trend & Seasonality

Market Basket Analysis

Market Basket and Lift - Introduction

Named Ranges - Excel

Indirect Function - Excel

2-way lift calculation in Excel

2-way lift calculation - Dynamic

2-way lift data table creation

3-way lift calculation

Store Layout optimization using Lift values

RFM (recency, frequency, monetary) Analysis

RFM (recency, frequency, monetary) Analysis

RFM Analysis in Excel- Part 1

RFM Analysis in Excel- Part 2

Part 2: Pricing

Steps of setting a Pricing policy

Different Pricing Objectives

Course Resources

2.3 Evaluating Pricing Strategies

Price Bundling

Types of Bundling

The Bundling Problem

Excel: Solving Bundling problem Part 1

Excel: Solving Bundling problem Part 2

Excel: Solving Bundling problem (Price Reversal)

Non-Linear Pricing Strategies

3.1 Lifetime Customer Value

Lifetime Customer Value - Key concepts

Lifetime Customer Value - Excel model

3.2 Variations and Sensitivity Analysis

Sensitivity Analysis in Excel

Variations in finding customer value

Appendix 1: Excel crash course

Basics

Worksheet Basics

Entering values and Formulas

Data Formats

Data Handling Basics - Cut, Copy and Paste

Saving and Printing - Basics

Basic Formula Operations

Mathematical Formulas

Textual Formulas

Logical Formulas

Date-Time Formulas

Lookup Formulas ( V Lookup, Hlookup, Index-Match )

Data Tools

Formatting data and tables

Pivot Tables

Advance Excel- Solver, Data tables



Reviews

R
Ramakrishna12 November 2020

So far So good, I have just completed sections One and Two and the content is just wow and to the point. easily understood and simple to follow the statistical calculation on forecasting. This is Course is Highly recommended to those who wanna learn Analytics.

G
Gihan11 November 2020

I am new to this field and wanted to understand the concepts behind analytics and retail business management and this is the perfect course for me to start with. It's easier to follow through and also to understand the concepts, theory and practice practicality through the content provided. Thank you very much for this amazing course!

P
Preeti5 October 2020

I was looking for course which could cover good use of solver function in excel. This course gives lots of examples how solver can be used in pricing and decision making. Interesting course. All the concepts are well explained and covered with excel as well. However, if there would have been a case study for students to solve where all the learnings can be applied it would be better as it would have helped students to verify & practice the understanding of concepts.

O
Oloko3 August 2020

It was a little tricky but the instructors gave a well detailed explanations. Especially the linear model and trend lines part. Awesome.

M
Muhammad23 July 2020

very very beneficial course for me. i learnt very knowledge about excel through this course and it will help me in my future. thank you

B
Bùi20 July 2020

The information is beyond what I expected. However, I found troubles in comprehending your accent and the subtitles are not correct also. With this, I fear I wont be able to catch up when we come to more complicated lessons. Any recommendations anyone?

S
Santosh1 July 2020

it is a very good course for even those who are begginers. After taking this course regular practice make them professional

R
Rohan30 June 2020

Nicely arranged lectures to explain the retail analytics basics. Hands-on excel examples are perfect.

L
Lifu14 June 2020

Some video lectures seemed to be missing? I can see the practice files but there's no lecture videos that explain on those. Some concepts well explained, but some aren't enough

A
Aditya20 May 2020

It was a great learning experience and learnt various ways of doing data analysis from the retail business point of view. Only one small suggestion is that if there would have been quizzes and more exercises for practicing the learnt content, it would have enhanced the learning substantially. All in all, the course provided great insights into doing data analytics.

V
Vibhaas15 May 2020

This is great course. I would highly recommend this for anyone who is starting with retail analytics. systematic and step by step explanation. Great job on Content and subject knowledge by Trainer.

M
MD.30 April 2020

currently i do BBA in AIUB & my major is HRM& Marketing i learn lots of new think About Marketing Analysis

S
Sameer25 April 2020

The teaching technique is surely great. The teaching pattern made the subject easy and simple to understand with theory first and then the live examples.

S
Sajal9 April 2020

Yes it's really exciting, though I worked in marketing company and I familiar with MS Excel, PowerPoint but it's good to reversion in better way.

V
Vasudevan26 March 2020

its easy to understand and interesting. A document tutorial can be given for keeping formulas and steps in mind


Coupons

StatusDateDiscount
Expired3/28/202095% OFF
Expired4/21/2020100% OFF
Expired4/28/2020100% OFF
Expired5/6/2020100% OFF
Expired5/24/2020100% OFF
Expired5/29/2020100% OFF
Expired6/5/2020100% OFF
Expired6/22/2020100% OFF
Expired6/25/2020100% OFF
Expired7/14/2020100% OFF
Expired7/19/2020100% OFF
Expired8/1/2020100% OFF
Expired8/16/2020100% OFF
Expired8/22/2020100% OFF
Expired9/28/2020100% OFF
Expired10/11/2020100% OFF
Expired10/21/202095% OFF
Expired10/30/2020100% OFF


2670218

Udemy ID

11/24/2019

Course created date

11/27/2019

Course Indexed date
Bot
Course Submitted by

Twitter
Telegram
Android PlayStore
Apple Appstore