Title

DX実現のための数学入門

DXやAIに必要な数学のエッセンスを現役AIエンジニアの立場からわかりやすく説明します.

3.96 (311 reviews)
Udemy
platform
日本語
language
Data & Analytics
category
instructor
DX実現のための数学入門
1 914
students
3 hours
content
Oct 2023
last update
$44.99
regular price

What you will learn

数学の楽しさ

DXにおける数学の重要性

ベクトル,行列,微分といった数学の基礎概念

回帰分析の具体的なアルゴリズム

Why take this course?

🎓 DX実現のための数学入門 - エッセンスを理解するあなたに!


コース概要

本コースは、数学が苦手でも安心!数学の基礎から応用まで,DXやAIを実務で活用するための必須スキルを効率的に学べる数学入門コースです。近年のDXトレンドに沿った数学の知識を身につけ、学習への嫌わしさを克服しましょう!


なぜDXでは数学が不可欠か? 🧮

  • DXの基礎: DX(デジタルトランスフォーメーション)を実現するには、データが必要となります。これらのデータは、数学的な規則に従っており、数学でそのパターンを理解し、応用することが可能です。
  • 幅広い知識: DXだけでなく、IT、会計、法律などの多岐にわたる知識も重要ですが、数学を中心に学び、他の分野とのつながりを深めていきます。

本コースの焦点

  • 回帰分析のエッセンス: 実務でよく用いられる数学の重要な一歩として、回帰分析を題材にしています。これにより、統計学やデータ分析などの応用知識への道筋を明確にします。
  • 基礎から応用: ベクトル、行列、微分などの数学の基本から,これらがどのように応用されるかを学びます。初級者でも安心して学べるカリキュラムで、数学入門者でも無理ありに学習の進路を歩めばシーチェンクできません!

目的 🎯

  • 具体的な利用方法: 数学の概念を理解するだけでなく、実際にDXやAIなどの分野でどのように応用するかを把握します。

特徴

  • 丁寧な説明: 基礎から始めて、一つひとつ丁嫌のことに注力し、解説を行います。何が原因で数学が苦手なのか、それぞれの点でサポートします。
  • 過程の理解: 途中過程を省略せずに説明することで、数学の理解度を深めることが可能です。
  • イメージ重視: 抽象的な概念もわかりやすいイメージを用いて説明します。数学は形と単位を扱う科学であるため、ビジュアルに依存することは避け、イメージを通じて理解を深めましょう!

内容 📚

  1. コース紹介: このコースがどのように構成されているか、そして数学がDXやAIにおいどどのような役割を担うかの概要を提供します。
  2. 初等数学: 基本的な数学の概念を振り返り、数学の言語を身につけます。
  3. ベクトル: 空間の理解を深めるためのベクトルの導入と応用例を学びます。
  4. 行列: 線形代数の基礎をしっかりと押さえ、データの構造を分析する手法を学びます。
  5. 微分: 変化の理解を深め、データの傾向や関係を模索するために使用する微分の基礎を押さえます。
  6. 応用例: 学んだ知識を実際の問題解決で応用し、DXやAIの分野でどのように活用されているかを確認します。

この数学入門コースを通じて、DXやAIへの数学的な理解を深め、学習へのポジティブな姿勢を身につけることができます。数学は理解しにくい科目かもしれませんが、現実世界でその重要性は明確にあります。このコースを経て、数学を新たな視点から見ることができるようになるはずです。让我们一起加入这个课程,共同推动DX和AI的发展!

Our review


Overview of the Course

The course has been rated a global 4.26, with all recent reviews being positive. It is designed for learners who have a background in humanities or have not thoroughly covered fundamental mathematics during their academic years. This course is particularly beneficial for those planning to venture into analytics and require a solid understanding of the foundational concepts without feeling overwhelmed by advanced material.

Course Strengths

Comprehensive Introduction:

  • The course starts with a broad yet approachable overview, covering fundamental mathematical concepts such as vectors, matrices, and differential calculus that are essential for understanding regression analysis.
  • It is ideal for beginners or those who need a refresher on these topics, as it provides clear explanations that help reinforce prior knowledge.

Practical Application:

  • The course emphasizes the practical application of mathematics in real-world problems, particularly focusing on regression analysis.
  • It demonstrates how mathematical concepts are applied in various fields, not just academically but also in business and data science applications.

Targeted Learning Path:

  • The curriculum is meticulously structured to target the essential aspects of mathematics that are critical for understanding background analysis.
  • It ensures that learners gain a strong foundation without being overburdened with unnecessary complexities.

Versatility and Usefulness:

  • The course material can be applied in multiple domains, showcasing the versatility of mathematical principles.
  • Students appreciate how the concepts taught in this course can be used as a springboard for generating ideas in their work.

Course Highlights

  • Foundational Mathematics Review:

    • A thorough review of vectors and matrices that had been forgotten or not fully grasped by some learners.
    • Differential calculus concepts were revisited with clarity, which helped deepen the understanding of their application in regression analysis.
  • Regression Analysis Explained:

    • The course provided a detailed explanation of regression analysis, including how it relates to derivatives and vectors.
    • This has been particularly helpful for learners who already had some exposure to analytics but needed a more fundamental understanding.
  • Educational Structure:

    • The course is structured in such a way that students from middle school level can understand basic concepts of backregression analysis up to the level of advanced linear modeling.
    • It offers a logical flow, making it easy for learners to follow along and apply what they've learned.
  • Continued Learning:

    • The course sets the groundwork for further studies, with plans for sequels that promise to expand on the knowledge gained here.
    • Learners who want to enhance their mathematical foundations for practical applications will find this course as a stepping stone.

Course Considerations

  • Initial Difficulty:

    • Some learners initially found the course too simple if they were already familiar with the basics of regression analysis and other mathematical concepts.
    • However, it became apparent that the simplicity was intentional, serving as a solid foundation for those who are new to these subjects or need to re-establish their understanding.
  • Depth of Content:

    • The course delves into the nitty-gritty details, which can be overwhelming at first but proves to be beneficial in the long run for a clearer grasp of the subject matter.
    • It helps in understanding how mathematical models are used in various applications, particularly in regression analysis.

Conclusion

This course is highly recommended for those who wish to strengthen their mathematical foundations with an emphasis on its practical application in backregression analysis. Its structured and comprehensive approach makes it ideal for beginners as well as for professionals looking to refresh or deepen their understanding of the essential mathematical concepts used in data science, analytics, and various other fields. With its focus on a targeted learning path and practical applications, this course is an excellent resource for anyone interested in expanding their knowledge and skills in mathematics.


Note: The course is designed to provide a solid understanding of the fundamental mathematical principles necessary for regression analysis, ensuring that students are well-prepared for more advanced studies in data science and analytics. The reviews highlight the course's effectiveness in delivering its content in an accessible and practical manner, making it a valuable educational tool for learners at various levels of mathematical proficiency.

Charts

Price

DX実現のための数学入門 - Price chart

Rating

DX実現のための数学入門 - Ratings chart

Enrollment distribution

DX実現のための数学入門 - Distribution chart
4876114
udemy ID
11/09/2022
course created date
02/11/2022
course indexed date
Bot
course submited by