Deep Learning: Artificial Neural Network

Theory and Python

4.90 (13 reviews)
Data Science
3 hours
Dec 2021
last update
regular price

What you will learn

Basics of Deep Learning

Artificial Neural Network

Artificial Neural Network with Keras, Python

Regression and Classification with Artificial Neural Network


Welcome to Deep Learning Fundamentals, Artificial Neural Network.

This course covers the basic theory and Python practice of artificial neural networks. This course is designed for beginners who are interested in deep learning. Having knowledge of undergraduate level mathematics is preferable, but not a must.

Artificial intelligence is a technology that makes machines imitate intelligent human behavior and human cognitive functions. Machine learning is a branch of artificial intelligence. It enables systems to learn from data automatically, that is, learn without being explicitly programmed. Deep Learning is a type of machine learning. It uses artificial neural networks to solve complex problems.

One reason why deep learning has drawn much attention is that it overcomes the limitations of traditional machine learning. The first limitation is that traditional machine learning cannot handle high dimensional data. Thus, the performance of the traditional machine learning model tends to level off as the data amount increases. The second is that, when we use traditional machine learning techniques, we need to extract features manually. Therefore, when we analyze image data or movie data, traditional machine learning techniques are not suitable because such data contains a great number of features.

Deep learning can overcome these limitations of traditional machine learning. An artificial neural network is one of the algorithms of artificial intelligence, and usually, it takes a form of a deep learning model. It simulates the network neurons that make up the human brain. The structure of an artificial neural network enables a deep learning model to solve complex problems that traditional machine learning algorithms can hardly handle.

This course has some Python tutorials for developing deep learning models. And this course uses a library named Keras, which enables us to develop deep learning models efficiently. Basic-level Python knowledge is preferable, but Python beginners are also welcome.

This course covers the following topics.

- What is Deep Learning?   

- Artificial Neural Network

- Perceptron and Multilayer Perceptron

- Activation Function

- Loss Function

- Gradient Descent Method

- Backpropagation

- Vanishing Gradient Problem

- Parameter Initialization

- Overfitting

- Regularization

- Optimization

- Batch Normalization

After completing this course, you will have a fundamental knowledge of artificial neural networks, both in theory and practice. And the knowledge will be also useful in learning advanced deep learning algorithms like convolutional neural networks and recurrent neural networks.

I’m looking forward to seeing you in this course!


Deep Learning: Artificial Neural Network - Screenshot_01Deep Learning: Artificial Neural Network - Screenshot_02Deep Learning: Artificial Neural Network - Screenshot_03Deep Learning: Artificial Neural Network - Screenshot_04



Course Introduction
Let's Get Started with Python!

Deep Learning Fundamentals

What is Deep Learning?
Artificial Neural Network
Logic Circuit
Logic Gate with Python
Multilayer Perceptron
Multilayer Perceptron with Python

Artificial Neural Network

Neural Network
Activation Function
Loss Function
Training Neural Network
Gradient Descent Method (Part 1)
Gradient Descent Method (Part 2)
Chain Rule
Vanishing Gradient Problem
Nonsaturating Activation Functions
Parameter Initialization
ANN Regression with Keras
ANN Classification with Keras

Optimization & Regularization Techniques

L1 & L2 Regularization
Regularization with Keras
Batch Normalization
Optimization & Batch Normalization with Keras
Thank You!


January 23, 2022
I really enjoyed this course, it is a great resource of information about deep learning and its formulas
December 22, 2021
This was a really informative and although it feels in depth, it's also a beginner level course and I have learned a lot. I have fundamental knowledge now and shall use it in my future. Thanks
December 18, 2021
Impressive, comprehensive and succinct coverage; I appreciate the provision of the PDF presentation and the supporting Jupyter notebook. [The usage of MLPRegressor() without specifying max_iter meant that covergence had not occurred.]
December 15, 2021
Excellent course in Deep Learning and Neural Networks. The teacher exposes the topics very clearly and the material he shares is fantastic



Deep Learning: Artificial Neural Network - Price chart


Deep Learning: Artificial Neural Network - Ratings chart

Enrollment distribution

Deep Learning: Artificial Neural Network - Distribution chart


12/14/2021100% OFF
12/14/2021100% OFF
12/15/2021100% OFF
udemy ID
course created date
course indexed date
Ignacio Castro
course submited by